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Introduction to Large Language Models 
Large language models (LLMs) are artificial intelligence (AI) systems that use machine learning (ML) algorithms to 
process vast amounts of natural language text data. They have become increasingly popular due to their impressive 
natural language processing (NLP) capabilities.1 Large pretrained language models are capable of extracting 
generalizations from vast amounts of text data, which can be utilized for a myriad of downstream applications such 
as text classification, text summarization, text generation, named entity recognition (NER), text sentiment analysis, and 
question-answering (Q&A). Additionally, many large language models are multilingual, making them even more versatile 
in utilizing text datasets across many different languages.

One of the strengths of large language models is that they contain a broad amount of information and knowledge, thanks 
to the massive amount of text data used to train them. However, this also means that they often struggle as specialists 
for deeper dives on topics or items with limited instances in the training dataset.2 To address this shortcoming, 
businesses can add domain-specific information from their vertical into a pre-existing large language model. This layered 
training approach in which specialized information is added to a pretrained model is known as transfer learning, or model 
fine-tuning.

Language Model Fine-Tuning
Transfer learning creates application-specific parameters on top of pretrained large language models. The process 
involves exposing a pre-existing model to new information, allowing the model to adapt to that new information while 
not forgetting the old information.3 A neural network’s weights are updated during transfer learning training, and the new 
weights may not be compatible with the old weights of the pretrained model. Thus, if transfer learning is not carefully 
executed, the model’s ability to perform the original task may degrade significantly resulting in an outcome known as 

“catastrophic forgetting.”4

Traditional approaches to transfer learning involved freezing all but a few layers of the deep neural network (DNN) of 
the pretrained model, thereby allowing only a few layers of the pretrained neural network to learn from the new data and 
avoid catastrophic forgetting.5 This approach has been particularly effective in transfer learning with large 
transformer-based language models like BERT.6 

ChatGPT has gained considerable attention since its initial release for its ability to write fluid human-like prose.7 
ChatGPT is a refinement of the InstructGPT large language model. InstructGPT was created through the alignment of 
large language model outputs with user intent by incorporating reinforcement learning from human feedback (RLHF).8

Application of reinforcement learning from human feedback to create InstructGPT involved three major steps: 
1) fine-tuning the GPT-3 large language model on diverse user prompts and appropriate responses, 2) rewarding the 
fine-tuned model when it combined appropriate prompt and response pairs, and 3) scoring the alignment of random 
prompts and responses with user intent by applying a reinforcement learning (RL) model based on the outcomes of step 
2. Ultimately, the performance of InstructGPT was compared against its predecessor, GPT-3, based on their ability to 
infer and follow user instructions (helpfulness), their tendency for hallucinations (truthfulness), and their ability to avoid 
inappropriate and derogatory content (harmlessness). InstructGPT outperformed GPT-3 on all three criteria, with human 
referees favoring the outputs of InstructGPT 85% of the time.
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Memory usage and communication costs are important considerations when training large language models. 
Recent work has shown that selectively updating only a small subset of a model’s parameters during transfer learning 
training can alleviate these issues while also avoiding catastrophic forgetting.9 So-called parameter-efficient fine 
tuning (PEFT) has been deployed to rapidly fine-tune large language models with domain-specific data and up-to-date 
information.

Figure 1. Illustration of the parameter efficient fine-tuning adapter technique applied to the attention module of a simplified 
shallow neural network.

Parameter-efficient fine-tuning leverages a regularization technique known as an adapter-based approach. The adapter 
technique inserts small bottleneck layers within each layer of a pretrained neural network model, thereby fixing the 
pretrained layers, and training the adapter layers on the new data (Figure 1).10 This approach has been shown to improve 
model stability and robustness in transfer learning for various applications with minimal computational overhead. 
This method is particularly useful for fine-tuning large language models.

High-Performance Computing Infrastructure is Essential
Building large language models specific to a certain business or vertical with transfer learning requires in-house machine 
learning expertise or an engagement with a trusted partner. Additionally, high-performance computing (HPC) hardware 
infrastructure such as multiple graphics processing units (GPUs), high-speed networking, and structured datasets for 
transfer learning are required. A high-level understanding of the datasets used to train the existing large language models 
is essential to ensure that the new data used in transfer learning will impart information diversity and increased reach of 
the business-specific large language model. There are a few publicly available data sets such as The Pile11 and ROOTS12 
for training large language models, yet many of the data sets used for training are proprietary and not public.

Fine-Tuning Language Models within Your Secure Infrastructure
There are several providers of large language model application programming interfaces (API) that allow businesses to 
programmatically connect directly to the model.7 However, these application programming interfaces could have limited 
to no flexibility for a user to customize the language model to a specific business need or ontology. Further, the costs of 
operating compute-intensive large language models via third-party providers, instead of operating the same models 
on-premises, should be carefully considered, as routine on-prem operations can be more cost effective.  
 
Enable your organization with large language models secured within your infrastructure to securely interact with your data 
and employees. Open-source foundational large language models such as BLOOM 176B,13 BLOOMZ-176B,14 GPT-J-6B,15 
or OPT-175B16 can be instantiated within your corporate information technology (IT) infrastructure. The biggest benefit of 
running the model within your infrastructure is security: securely manage the model and secure the information it receives. 
Additional benefits include faster inference, greater availability and up time, reduced reliance on third-party services, 
maintain greater control of your own data and infrastructure, cost-effectiveness, and filtering the language model outputs 
to align them with your organization’s domain and voice.
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Empower your organization with large language models fine-tuned on your data and secured within your infrastructure. 
Copies of the large language model instantiated within your corporate IT infrastructure can be securely fine-tuned with 
domain-specific knowledge, continually updated with new data, and managed with guardrails on content, bias, and 
toxicity to create your organization’s customized large language models. Dell Technologies can help you on this journey.

Recent Advances in Fine-Tuning Language Models
Recent results from a research group at Stanford University demonstrated the benefits of using a large language model 
to further fine-tune and refine an existing large language model, resulting in a new model known as ALPACA.17 This 
process demonstrated a new paradigm in which one large language model was used to train another large language 
model. This approach could further reduce the role of humans in the model training loop, such as reinforcement learning 
with human feedback (RLHF), as previously leveraged by InstructGPT and ChatGPT.8

  
In ALPACA’s case, a large generalist language model created a curated series of questions and answers on which to 
fine-tune another. Fine-tuning of the second language model with questions generated by the first resulted in improved 
performance metrics of the second language model. This paradigm has since been expanded to other domains outside 
of question and answer to enable rapid and efficient tuning of existing large language models on new data.18

Figure 2. Illustration demonstrates the use of one, or multiple, large language models to either: 1) fine-tune a large 
language model on proprietary domain-specific data, or 2) use a language model to further refine proprietary 
domain-specific data for use in downstream large language model fine-tuning. All steps can be securely and privately 
performed within a customer’s infrastructure with Dell private cloud and/or on-premises platforms. 
 
Dell Technologies PowerEdge XE9680 Server 
The Dell PowerEdge XE9680 is a high-performance server designed and optimized to enable uncompromising 
performance for artificial intelligence, machine learning, and high-performance computing workloads. Dell PowerEdge 
is launching our innovative 8-way GPU platform with advanced features and capabilities. 

•	 8x NVIDIA® H100 80GB 700W SXM GPUs or 8x NVIDIA® A100 80GB 500W SXM GPUs
•	 2x Fourth Generation Intel® Xeon® Scalable Processors
•	 32x DDR5 DIMMs at 4800MT/s
•	 10x PCIe Gen 5 x16 FH Slots
•	 8x SAS/NVMe SSD Slots (U.2) and BOSS-N1 with NVMe RAID
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The PowerEdge XE9680 6U server is designed for AI, machine learning, and deep learning applications. It features the 
latest Intel® Xeon® processors with up to 56 cores, 8 NVIDIA® H100 or A100 GPUs, NVIDIA® NVLinkTM technology for 
GPU-GPU communication, and supports up to 4 TB RDIMM of CPU RAM. The server supports virtualization options like 
NVIDIA® Multi-Instance GPU (MIG) capability, DDR5, NVLinkTM, PCIe Gen 5.0, and NVMe SSDs. It also supports NVIDIA® 
GDS (GPUDirect Storage), which provides a direct data path between GPU memory and storage, increasing system 
bandwidth and decreasing latency. The server is certified by NVIDIA® and has a secure, efficient, and comprehensive 
systems management solution with the OpenManage Enterprise console and iDRAC. 

The results described in this article used a PowerEdge XE9680 server with 8 x 80 GB H100 NVIDIA® HGX GPU cards 
with NVLinkTM technology, 2 TB of CPU RAM, and 2 x Intel® Xeon® processors on each server. The XE9680 server was 
configured with the Ubuntu v22.04 Linux operating system, Anaconda v23.1.0, CUDA v12.1, cuDNN v8.8.1, and the same 
python dependencies as noted by in the original report of the large language model fine-tuning benchmark.17 A full list of 
the python dependencies installed on the XE9680 server can be found in the Appendix section of this article.

PowerEdge XE9680 Server Benchmarking Results
Dell Technologies has demonstrated large language models of comparable scale and performance to GPT-3 can be 
launched and queried on our PowerEdge XE9680 server platform.19 Open-source language models include BLOOM-7B1,13 
GPT-J-6B,15 and OPT-6.7B.16 Large language models require sizable memory and GPU capabilities at inference and during 
model fine-tuning. In this instance, the open-source language models BLOOM-7B1, GPT-J-6B, and OPT-6.7B were launched, 
fine-tuned, and benchmarked on a PowerEdge XE9680 server. 

Researchers at Stanford University recently demonstrated the benefits of using a large language model to further 
fine-tune and refine two existing large language models, Meta’s LLaMA-7B20 and OPT-6.7B16 models, resulting in a new 
model known as ALPACA.17 This process demonstrated a new paradigm in which the output of one large language model 
was used to fine-tune another large language model.

Support for high-speed and memory capacity
• Up to 32 DDR5 DIMMs
• Up to 4800 MT/s(1DPC) or 4400 MT/s (2DPC)

I/O
• 10 x 16 PCIe Gen5 slots

• One OCP NIC 3.0

• 2 x 1GbE LOM

GPU Optimized
• NVIDIA 8 x H100 SXM5 700W 80GB 

GPUs 
-or-

• NVIDIA 8 x A100 SXM4 500W 80GB 
GPUs

• Full NVLINK interconnectivity

Support for up to 16 Drives
• Up to 8 x SAS/SATA/ NVMe Gen4 or 16x E3.S
• Rear Hot -Plug BOSS N -1 (2 x M.2 MVNe) for 

boot (optional)
• SW RAID/PERC12 support

2 Socket Capable
• Up to two 4th Generation Intel® 

Xeon® Scalable processors with up to 56 cores per processor
• 6U air-cooled, up to 35C ambient
• 1200mm rack capable

Large Model Training

AI

Dell PowerEdge XE9680

PowerEdge XE9680

CPU 2x Intel® Xeon® 8470 52-core Processor

GPU 8x NVIDIA® H100-SXM-80GB (700W)

System Memory 32x64GB – 2TB 

Host NIC NVIDIA® CX7
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The Stanford researchers noted that their ALPACA model fine-tuning process required approximately 3 hours of 
continuous compute time on an undisclosed cloud computing system with a hardware configuration of 8 x 80 GB A100 
NVIDIA® GPU cards, and an undisclosed amount of CPU RAM and I/O networking speeds.21 Those same Stanford ALPACA 
benchmarks were run on a single Dell Technologies PowerEdge XE9680 server, using the same code and fine-tuning data 
set provided by the Stanford research team.17 We were only able to compare our results against the OPT-6.7B language 
model, as the LLaMA language model was not open source. We did not have access to the LLaMA language model at the 
time this article was written, as access was restricted and regulated by Meta via an application process.22

Our PowerEdge XE9680 fine-tuning benchmarking results indicated a 10-to-12-fold reduction in fine-tuning time versus 
the Stanford cloud compute platform fine-tuning, with each process using eight GPUs (Figure 3). Our results are especially 
noteworthy as the PowerEdge XE9680 server significantly outperformed the cloud compute instance with the same 
number of GPUs.

Figure 3. Language model fine-tuning time for various LLMs with the Stanford ALPACA data set, code, and process. 
Fine-tuning times for large language models (LLMs) on the Dell Technologies PowerEdge XE9680 server with 8 x NVIDIA® H100 
80 GB GPUs (blue) vs. the unnamed cloud compute instance with 8 x NVIDIA® A100 80 GB GPUs (orange) using the same 
benchmarking data, process, and code. In this instance, the XE9680 demonstrated a greater than 10-fold reduction in OPT-6.7B 
language model fine-tuning time as compared with the OPT-6.7B fine-tuning on the cloud instance. 

Impact of Data Set Size on Language Model Fine-Tuning
The impact of the data set size on the language model fine-tuning time was assessed using the OPT6.7B open-source 
language model.16 The same benchmarking method as used above was applied in this survey,17 and only the rows of 
fine-tuning data were varied. The data was the same set as utilized in the Stanford ALPACA study.17 This data set 
contained 52,002 rows of data where each row contained a “question,” “input,” and “output” field. The 52,002 rows of data 
contained an average of 58.2 words per row of data, with a total of 3,025,587 words in the data set, and an average of 76.7 
tokens per row of data, with 3,986,889 tokens in the data set (results based on OPT-6.7B tokenizer).16 The smaller and 
larger data sets for this scaling study were assembled by sampling with replacement and a defined random seed for the 
discrete sample sizes show in Figure 4. A linear relationship was observed between the fine-tuning time of the language 
model and the rows of fine-tuning data used in the training process. The model fine-tuning process required 
approximately 3 minutes per 10,000 rows of fine-tuning data. 
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Figure 4. Language model fine-tuning time for various Stanford ALPACA fine-tuning data set sizes with the OPT-6.7B LLM and 
the Stanford ALPACA code and process on the Dell PowerEdge XE9680 server.

A larger-scale study of the data set size on the language model fine-tuning time was assessed using the OPT6.7B 
open-source language model.16 The same benchmarking method as used above was applied in this survey,17 and only 
the rows of fine-tuning data was varied over several orders of magnitude. The data sets for this larger scale study were 
assembled by sampling with replacement and a defined random seed for the discrete sample sizes show in Figure 5. 
For each entry in the resampled data set, a row corresponded to an average of 76.7 tokens, with the 10M row sample 
containing 766,798,807 tokens. Again, a linear relationship was observed between the fine-tuning time of the language 
model and the rows of fine-tuning data used in the training process, consistent with the results of the smaller-scale study 
in Figure 4.

Figure 5. Large-scale study of language model fine-tuning time for various Stanford ALPACA fine-tuning data set sizes with the 
OPT-6.7B LLM and the Stanford ALPACA code and process on the Dell PowerEdge XE9680 server. The 10M row 
fine-tuning data set contained 767M tokens.

Impact of Language Model Size on Model Fine-Tuning
The impact of OPT language model size, by number of language model parameters, on the fine-tuning time was assessed 
with the Stanford ALPACA dataset, code, and process.17 The OPT language model was available with 125 million, 350 
million, 1.3 billion, 2.7 billion, 6.7 billion, 13 billion, and 30 billion model parameters.16 OPT language models with 2.7 
billion parameters, and fewer parameters, were fine-tuned on the Dell PowerEdge XE9680 server in less than 10 minutes 
each. The OPT-6.7B model required 15 minutes while the OPT-13B language model required 42 minutes to fine-tune. The 
larger OPT-30B language model resulted in out-of-memory (OOM) errors.
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Figure 6. Fine-tuning times for OPT language models of varied sizes on the Stanford ALPACA fine-tuning data set, code, and 
process on the Dell Technologies PowerEdge XE9680 server. 

Conclusion
In conclusion, large language models offer many advantages for general natural language processing tasks. 
However, practical use of these generalizations requires a fine-tuning process to create interfaces between the models 
and downstream applications to make them even more powerful. Various transfer learning approaches have been 
proposed to enable the fine-tuning of pretrained language models on specialized tasks and use cases. In-house machine 
learning expertise or trusted partners, high-performance computing hardware infrastructure, and structured datasets are 
needed to successfully implement this approach. Transfer learning is an effective strategy to customize large language 
models, but access to high performance computing resources and skilled talent is crucial, as this enables low latency 
responses to meet the performance requirements of an enterprise user base. 
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APPENDIX
All results in this article were collected from a Dell Technologies PowerEdge XE9680 server. The server was configured 
with 8 x 80 GB H100 NVIDIA® HGX GPU cards with NVLinkTM technology, 2 TB of CPU RAM, and 2 x Intel® Xeon® 
processors. The server was configured bare metal with the Ubuntu v22.04 Linux operating system, Anaconda v23.1.0, 
CUDA v12.1, cuDNN v8.8.1, and the same python dependencies as noted by in the original report of the large language 
model inference benchmark.17 The python dependencies included torch v2.0.0+cu118, and transformers v4.26.1. 

The Stanford ALPACA language model benchmarking code17 was imported directly via git clone from https://github.com/
tatsu-lab/stanford_alpaca. This data set contained 52,002 rows of data where each row contained a “question,” “input,” 
and “output” field. Each row contained an average of 58.2 words, with a total of 3,025,587 words in the data set, and an 
average of 76.7 tokens per row of data, with 3,986,889 tokens in the data set (results based on OPT-6.7B tokenizer).16

The language model benchmarking code was executed via the command line interface (CLI). The benchmarks were 
conducted in the same manner as described in reference 17. Benchmarks were conducted with all 8 GPUs available, and 
either the number of rows of fine-tuning data (10k, 20k, 30k, 40k, 50k, 60k, 70k, 80k, 90k, 100k, 1M, 10M) or the number 
of parameters in the OPT language model (125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B) were altered. Only one variable 
was altered at a time. The language model fine-tuning time, as reported at the CLI after the process concluded, were 
reported as outputs.

As an example, the following CLI command was used for benchmarking the OPT-6.7B language model fine-tuning time 
on the ALPACA data set with 8 GPUs and the same default fine-tuning settings described by the Stanford ALPACA 
research team:17

torchrun --nproc_per_node=8 train.py \
    --model_name_or_path facebook/opt-6.7b \
    --data_path ./alpaca_data.json \
    --bf16 True \
    --output_dir=test_output \
    --num_train_epochs 3 \
    --per_device_train_batch_size 4 \
    --per_device_eval_batch_size 4 \
    --gradient_accumulation_steps 8 \
    --evaluation_strategy “no” \
    --save_strategy “steps” \
    --save_steps 2000 \
    --save_total_limit 1 \
    --learning_rate 2e-5 \
    --weight_decay 0. \
    --warmup_ratio 0.03 \
    --lr_scheduler_type “cosine” \
    --logging_steps 1 \
    --fsdp “full_shard auto_wrap” \
    --fsdp_transformer_layer_cls_to_wrap ‘OPTDecoderLayer’ \
    --tf32 True
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