
Copyright © Dell Inc. All Rights Reserved.

Code Generation – Generative AI Cheat Sheet
What is Generative AI code generation?

Generative AI code generation automates the writing of code 

based on natural language inputs by training on vast datasets of 

code to understand programming patterns, styles, and logic. It 

can accelerate development and follow organizational 

standards, best practices, security guidance, and regulatory 

compliance requirements, enabling developers to focus on 

higher-level strategic tasks by delegating routine and repetitive 

coding tasks to AI. Guardrails can be defined and implemented 

into the Generative AI system, ensuring any generated code 

doesn’t risk violating intellectual property or copyright laws and 

maintains standards and best practices.

Natural language programming

Allow developers to describe software 

functionalities in plain language, which 

Generative AI then converts into executable 

code, democratizing coding by making it 

accessible to individuals without a deep 

technical background.

Suggested example prompts:

1. Calculation: “Write a Python function 

to calculate the Fibonacci sequence 

up to n numbers.”

2. Data conversion: “Convert a user's 

input from Celsius to Fahrenheit in 

JavaScript.”

3. Form creation: “Create a simple 

HTML form with fields for name, 

email, and age.”

Unit testing

Automate the creation of test scripts based on 

the software's functionalities and 

requirements, ensuring comprehensive 

coverage, time savings, and quality 

improvements by identifying bugs and 

inconsistencies early in development.

Suggested example prompts:

1. Sorting testing: “Generate unit tests 

for a Java method that sorts an array of 

integers.”

2. REST API testing: “Write multiple tests 

for a REST API endpoint that returns 

user details by ID.”

3. Format validation: “Create a test suite 

for validating email address formatting 

in Python.”

Code modernization

Reduce the time and resources required to 

refactor, optimize, and document old 

codebases. Detect obsolete code patterns 

and suggest alternate modern methods 

efficiently.

Suggested example prompts:

1. Legacy report: "Analyze the codebase 

and generate a report identifying 

outdated libraries, deprecated functions, 

and potential security vulnerabilities."

2. Modernize functions: "Generate 

modernized versions of legacy functions, 

replacing deprecated code."

3. Migration outline: "Create migration 

document that outlines the steps needed 

to transition from the legacy system to the 

modernized codebase.”

Key benefits of Generative AI code generation

• Efficiency: Accelerates development by automating routine 

coding tasks.

• Innovation: Encourages creative problem-solving with rapid 

prototyping capabilities.

• Adaptability: Adapts to evolving project requirements with 

dynamic code generation.

• Collaboration: Promotes teamwork by bridging the gap 

between technical and non-technical team members.

Key technology roles in code generation

Role of AI model: Serves as the core engine for Generative AI 

code generation, utilizing its training to understand, interpret, 

and generate code based on learned patterns and structures.

Role of data: Acts as the core knowledge base for AI models, 

providing diverse examples of code and programming concepts 

needed for models to learn and accurately generate new code.

Role of prompts: Specifies desired output in natural language 

or code snippets, allowing the AI to tailor its code generation to 

meet specific user requirements or solve specific problems.

Code documentation

Generate comprehensive documentation 

automatically for software code, ensuring 

consistency, clarity, and up-to-date information 

across the development lifecycle. Save time 

by reducing manual efforts and improving 

collaboration and knowledge transfer.

Suggested example prompts:

1. API documentation: “Generate an API 

documentation for a new payment 

processing service.”

2. Developer onboarding: “Generate an 

onboarding guide that explains project 

architecture and coding standards.”

3. Change log: “Generate a full change 

log and release notes for the latest 

software version, detailing updates, bug 

fixes, and new features..”


	Slide 1: Code Generation – Generative AI Cheat Sheet

